
Tom Kerkhove
Azure Architect at Codit, Microsoft Azure MVP, Creator of Promitor

Adventures of building a multi-
tenant PaaS on Microsoft Azure

Twitter: @TomKerkhove
GitHub: @TomKerkhove

blog.tomkerkhove.be
codit.eu



Disclaimer
You’ll learn about my adventures & findings, not about silver bullets

2



Scale

3



Scale up/down

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 4

Scale

| Easiest way of scaling is to get a bigger box

| The only trade-off is that it means your app will be unavailable for a while

| At some point you’ll run out of “bigger boxes”



Scale out / in

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 5

Scale

| Provide multiple copies of your application based on your workload

| No impact on your uptime, but more complex

| My preferred way of scaling, but your application needs to be designed for it



Choose the right compute infrastructure

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 6

Functions

Functions

Container 

Instances

Service

Service 

Fabric Mesh

Cloud 

Services

App

Service 

Fabric

Kubernetes

Cluster

VM Scale 

Sets

VMs

Bare Metal

| As control increases, so does complexity

| Every service has it’s own characteristics

| How you run your application

| How you package your application

| How you scale your application



Designing for scale

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 7

Scale

Order Function 

Order Function 

Order Function 

Order Function 

Order Function 

Order Function 

Azure Functions



Designing for scale with serverless

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 8

Scale

| The good

| The service handles scaling for you

| The bad

| The service handles scaling for you

| Does not provide a lot of awareness

| The ugly

| Dangerous to burn a lot of money



June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 9

Source: http://blog.tdwright.co.uk/2018/09/06/beware-runonstartup-in-azure-functions-a-serverless-horror-story/

http://blog.tdwright.co.uk/2018/09/06/beware-runonstartup-in-azure-functions-a-serverless-horror-story/


Designing for scale with PaaS

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 10

Scale

Instance

Orders Role

Cloud Services

Instance

InstanceInstance

InstanceInstance

InstanceInstance

Autoscaler

Message 
Count > 1,

Add instance

Scale!



Designing for scale with PaaS

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 11

Scale

| The good

| You need to define how it scales

| Provides you with scaling awareness

| The bad

| You need to define how it scales

| Hard to determine the perfect scaling rules

| The ugly

| Be aware of “flapping” (http://bit.ly/monitor-autoscale-best-practices)

| Be aware of infinite scaling loops

Use an Azure Monitor Autoscale

http://bit.ly/monitor-autoscale-best-practices


12

Scale
Node 1

Cluster

Node 2 Node 3

Pod

Pod

Pod

Pod

Pod

Pod

Pod

Pod

Pod

Pod

Pod

Pod

Pod

Pod

Pod

Designing for scale with CPaaS

Custom Metric
Provider

Horizontal Pod 
Autoscaler(s)

Cluster 
Autoscaler



13

Node 1

Cluster

Node 2 Node 3

Pod

Pod Pod

Pod

Pod

Pod

Pod

PodPod

Custom Metric
Provider

Horizontal Pod 
Autoscaler(s)

Virtual Kubelet

Azure Container Instances

Container Group

Pod

Container Group

Pod

Container Group

Pod



Designing for scale with CPaaS

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 14

Scale

| The good

| Share resources across different teams

| Serverless scaling capabilities are available with Virtual Kubelet & Virtual Nodes

| The bad

| You are in charge of providing enough resources

| With great power, comes great responsibilities
| No autoscaling out-of-the-box

| Scaling on different levels

| Scaling can become complex(er)

| The ugly

| Takes a lot of effort to ramp up on how to scale

| There’s a lot to manage



15

Use the tool that fits your needs
Don’t use a service because you know it, evaluate your options

Every technology has its trade-offs, learn them

Don’t overengineer, “because we’ll need it later”

You don’t need hyper scale from day I



Create awareness around your autoscaling

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 16

Scale

| Avoid burning money, get notified before it’s too late!

| Gain insights in your autoscaling rules

| Either configured by you or managed by Azure (ie. Azure Functions)

| Learn from them and tweak them

| Detect autoscaling loops in TEST instead of during live-site issue

| Choose the approach that fits your needs

| Configure Azure Monitor notifications

| Use built-in metrics to visualize and alert on

| Provide your own tooling around it



Create awareness around your autoscaling

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 17

Scale



Tips

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 18

Scale

| Resource consolidation pattern does not play nice with autoscaling

| Configure maximum instance count for your autoscaling

| Provide representable metrics of your remaining work

| Azure Monitor Autoscale is a hidden gem in Azure, use it!

| Does all the great things an autoscaler should do

| Use budget alerts, if feasible



Tenancy

19



20

Multi-tenancy is all about choices

How will you deploy your application?

How much isolation does it require between tenants? How much customization will we allow?

Do our tenants need access to their data?

Will it run in multiple regions?
Will one region require multiple deployments?

What is our pricing model?

Do we need to reflect this in our tenancy?

Multi-tenancy is more than data sharding



Choosing a tenancy model

21

Tenancy

App Stamp A Stamp B

Stamp C Stamp D

App
Tenant A

App
Tenant B

#n…#1 #n…#1BA

Full isolation between tenants by 

deploying everything for every tenant

Run a multi-tenant application, but use 

sharded data layer

App deployed in multiple stamps & 

geographies with sharded data layer



Choosing a sharding strategy

22

Tenancy

| Spread all your data across multiple smaller databases instead of one big one

| Good example of scaling out to handle load

| A shard key is used to determine the shard based on the chosen strategy

| Choose your strategy wisely and think about your query patterns

| Does your customer need access to it? Then you should shard per tenant!

| You cannot easily change your strategy later on

| More information: http://bit.ly/sharding-pattern

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure

http://bit.ly/sharding-pattern


Locating shards

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 23

Tenancy

Shard 
Manager

How do I connect to “Sello”?

Order
Processor

#5#4#3#2#1 #6 #7 #8

Use this connection string

Get Secret

“Sql-Tenant-Sello”



Using shard managers

24

Tenancy

| Provide catalog of all shard in the platform

| Determine current shard based on shard key & chosen approach

| Metadata is stored in a store of choice

| Be careful where you store your secrets

| Choosing a good shard manager

| They should handle secrets in a secure manner

| Build your own, ie on top of Azure Key Vault

| Use existing tool, ie Azure SQL Database Elastic Tools

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure



Cost-efficient sharding

25

Tenancy

#5#4#3#2#1 #6 #7 #8

Elastic Pool

| In a PaaS world you need to pay for every data store instance you have.

S
1
 –

5
%

S
1
 –

1
5
%

S
1
 –

5
%

S
1
 –

2
5
%

S
1
 –

5
0
%

S
1
 –

7
%

S
1
 –

2
1
%

S
1
 –

4
1
%

Use an Azure SQL Elastic Pools
| We pay ~€200 for 160 DTU, but only use ~20 % of it



Cost-efficient sharding

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 26

Tenancy

#5#4#3#2#1 #6 #7 #8

Elastic Pool

| Resource pools have a resource limit for all shards

7
 D

T
U

1
5
 D

T
U

8
 D

T
U

2
5
 D

T
U

2
4
 D

T
U

7
 D

T
U

4
0
 D

T
U

2
1
 D

T
U

9
3
 D

T
U

I need more resources!!!

We ran out, we only 
have 200 DTU

2
5
 D

T
U



Cost-efficient sharding

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 27

Tenancy

#5#4#3#2#1 #6 #7 #8

Elastic Pool

| Enforce resource limitation on a per-shard level

7
 D

T
U

1
5
 D

T
U

8
 D

T
U

2
5
 D

T
U

2
4
 D

T
U

7
 D

T
U

4
0
 D

T
U

2
1
 D

T
U

5
0
 D

T
U

I need more resources!!!

You’ve had enough

3
7
 D

T
U



| Provide multiple resource pools to reduce impact of noisy neighbors

Cost-efficient sharding

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 28

Tenancy

#5#4#3#2#1 #6 #7 #8

Resource Pool A Resource Pool B Resource Pool C

7
 D

T
U

1
5
 D

T
U

8
 D

T
U

2
4
 D

T
U

7
 D

T
U

2
1
 D

T
U

5
0
 D

T
U

3
7
 D

T
U

7
 D

T
U

1
5
 D

T
U

8
 D

T
U

2
4
 D

T
U

7
 D

T
U

3
7
 D

T
U



| Reflect your pricing model in your resource pooling

Cost-efficient sharding

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 29

Tenancy

#5#4#3#2#1 #6 #7 #8

Basic Pool

3
7
 D

T
U

2
4
 D

T
U

5
 D

T
U

5
1
 D

T
U

6
3
 D

T
U

7
7
 D

T
U

1
5
8
 D

T
U

1
2
1
 D

T
U

Standard Pool Premium Pool

Provision 250 Standard DTUs , capped at 100Provision 100 Basic DTUs , capped at 50 Provision 500 Premium DTUs, 

capped at 250



Cost-efficient sharding

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 30

| Consider moving all shards in a resource pool

| Configure maximum consumption per database

| Consider using multiple resource pools to reduce impact of noisy neighbor

| Resource pools are a great way to reflect your pricing model

| Monitor your pools as you would do for individual databases

Tenancy



Determining tenants

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 31

| Determining the tenant that is consuming your service via your API gateway

| Map the authentication key to the registered application and use its context

Tenancy

API
Gateway

API

DB

POST api/v1/orders

X-API-Key ABC

POST api/v1/orders

X-Tenant Sello

Shard 
Manager

What shard is “Sello”?

Bill Bracket owns ABC.
Part of “Sello” group



Determining tenants

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure

Tenancy

<policies>
<inbound>

<base/>
<set-header name="X-Tenant" exists-action="override">

<value>
@(string.Join(";", (from item in context.User.Groups where 

item.Name.ToLower().Contains("sello -") select item.Name.Replace("Sello - ", String.Empty).Trim())))
</value>

</set-header>
</inbound>
<backend>

<base/>
</backend>
<outbound>

<base/>
</outbound>
<on-error>

<base/>
</on-error>

</policies>



Monitoring

33



34



35



36

Monitoring is a shared responsibility
You only value good monitoring, if you’ve been on the other side of the fence

Train your developers to use their own toolchain,

use automated tests on live infrastructure



37

Enrich your telemetry
Correlated all your telemetry to provide a logical flow, not just traces

Provide app-specific contextual information to all telemetry

Always return your correlation ids to your consumers

Never track personal identifiable information

Use different layers of correlation ids

Use consistent terminology



Correlate your telemetry

38

Monitoring

Frontend API

Order
Processor

DB

Get Products

Create Order

Operation ABC

Operation DEF

Session XYZ

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure



Correlate your telemetry

39

Monitoring

Frontend API

Order
Processor

DB

Get Products

Create Order

Operation ABC

Operation DEF

Session XYZ

Cycle 123

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure



40

Health checks

No direct business value, until it’s too late

Report status of your application - Is my application healthy? Is it ready?

Use them to verify deployments, measure latency, up time, cold start, …

Always provide throttling to block noisy consumers

Think about your connection management

Go as far as you want



41

Health checks



Handling alerts

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 42

| Always automate alert creation, they are part of your infrastructure as well

| Build a centralized alert handling process

| Azure Logic Apps is a good fit for this

| Different alerts have different contracts

| Use adapters to receive notifications

| Map to internal metric contract

| Handle via centralized alert handler

Monitoring

Azure Monitor
Classic Alert 

Adapter

Azure Monitor
Metrics Alert 

Adapter

Centralized
Alert Handler

Azure Monitor
Common Alert 

Adapter

Time to move it! Azure Classic Alerts will be deprecated by end of August 2019.

https://docs.microsoft.com/en-gb/azure/azure-monitor/platform/monitoring-classic-retirement



Handling alerts

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 43

| Use the Logic App template for Azure Monitor!

Monitoring



44

Write Root Cause Analysis (RCA)
Train your team for PROD outages, write RCAs in all environments

Did our alerts detect it? Did we have enough telemetry?

Provides a structured way of analysing your platform

Use as a knowledge transfer to customers & team

Define action points and follow-up on them

Use them to detect recurring issues

There is no such thing as failure, only opportunities to learn



Webhooks

45



Consuming webhooks

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 46

| Generated URLs are evil, provide good DNS names of your services

| And this goes for everything, not only webhooks

Webhooks

API

(12345.provider.com)

3rd
Party

POST https://12345.provider.com/api/webhooks

Where did 
123456 go?!

API

(67890.provider.com)

Use an API Gateway



Consuming webhooks

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 47

| Do not reduce your API security because of your 3rd Party

Webhooks

API

(12345.provider.com)

3rd
Party

POST http://12345.provider.com/api/webhooks

Where is 
your cert?

Use an API Gateway



Consuming webhooks

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 48

| Always route webhooks through an API gateway

| This decouples the webhook from your internal architecture

Webhooks

API
Gateway

API
3rd

Party

POST http://sello.com/api/v1/webhooks POST https://sello.provider.com/api/v1/webhooks

Authentication: Certificate

https://sello.provider.com/api/v1/webhooks


Consuming webhooks

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 49

| Always route webhooks through an API gateway

| This decouples the webhook from your internal architecture

Webhooks

API
Gateway

Orders
API

3rd
Party

POST http://sello.com/api/v1/webhooks
POST https://orders.sello.provider.com/api/v1/webhooks

Authentication: Certificate

Stock
APISome gateways support auth 

key via query parameters

https://sello.provider.com/api/orders/v1/webhooks


50

Provide user-friendly webhooks

Think as a webhook consumer, not publisher.

Provide a way for consumers to provide context during registration

Provide a self-service CRUD API to register new subscriptions

Pass your correlation id via Request-Id header

Provide an invocation history



Spaghetti infrastructure 2.0?

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 51

Webhooks

Warehouse
Service

Order 
Service

Stock
Service

Shipping 
Service

Invoice
Service

Payment
Service



Spaghetti infrastructure 2.0?

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 52

| Long-term this can start to become a burden

| A lot of bookkeeping to know who to update, how we should authenticate, etc

| No central place to route all webhooks through

| Your platform needs to be robust

| What if subscriber II is not responding? Let’s build a retry mechanism!

| Who says subscriber II owns foo.bar.com?

| Webhooks should use a “I don’t care, here’s an update” approach

Webhooks



Event Routers

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 53

Webhooks

Warehouse
Service

Order 
Service

Stock
Service

Shipping 
Service

Invoice
Service

Payment
Service

Event 
Router



Event Routers

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 54

| Event Routers do all the heavy lifting for you

| Provide a centralized hub for all things events

| Bookkeeping of whom subscribes to what webhooks and events

| They will retry sending events when they did not reply

| They will perform webhook validations

| Publishers can publish events to the event router and takes it from there

| Great for for internal usage, but harder to use with 3rd parties

| Webhook validation is not always easy to setup

Webhooks



Tips

June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 55

| Webhooks are not durable, if you are not around you will miss it.

| If you need to ensure at-least-once delivery, consider using a broker instead

| Store audit entry of webhook that are being pushed

| Can be important in case of a dispute

| Optionally even include the response of the consumer

| Do not only allow global registrations, consider serving more granular updates

| For example, I want updates of one flight instead of all flights

| Provide rate limiting on your webhook endpoints

| Don’t let your platform go down by your 3rd party provider

| Webhooks are contracts as well

| Provide good documentation and version them

Webhooks



56

Use Webhooks & Events internally
Build fully automated reactive applications / data ingestion pipelines

Decouple teams from each other

Provide capability to extend



June 2019 Adventures of building a (multi-tenant) PaaS on Microsoft Azure 57



Azure Event Grid, the heart of Azure

58

Example

| Azure Key Vault is working on native Event Grid Events

| This provides the capability to fully automate certificate management

| The power of these events can leverage closer integration by other services such as

Azure App Services, API Management who can consume latest version of cert

https://www.codit.eu/blog/azure-event-grid-the-heart-of-azure/

https://www.codit.eu/blog/azure-event-grid-the-heart-of-azure/


59

No.



Embrace Change

60



61



62

How we used to ship
Stable releases every few years

Hard to shift product focus



63

And then came agile…



64

DevOps

Releasing Software to Production

multiple times a day



6565

DevOops



66

You are not Netflix

Manual interventions are evil, automate (as much as possible)

Create automated pipelines for shipping software
(deployment rings are awesome)

Use infrastructure/build as code

DevOps is a culture and requires a mind shift



67

We live in a world of constant change
Our underlying infrastructure is constantly moving & changing

Cloud vendors are competing to offer unique services

Staying up to date is a lot harder



68

Who knows these services?

Service Bus for Windows Server

Azure BizTalk Services

Azure Hybrid Connection

Azure Alerts
Azure Access Control Service

Azure Container Services

Azure Data Factory v1

Azure RemoteApp



The lifecycle of a service

69

Embrace Change

Private Preview

• Rough version of 

product

• Shared under NDA to 

limited group

Public Preview

• Available to the masses

General Available

• Covered by SLA

• Supported version

The End

• Deprecation

• Silent Sunsetting

• Reincarnation in 2.0



The end of the road

70

Embrace Change

| Official deprecation

| Officially announced as deprecated

| Migration is required before service shutdown

| Reincarnation

| A new version of the service arises in a new version

| Can be part of service or service in total

| Silent deprecation

| No further development in the product

| Service is still running smoothly

| Does not mean you should stop using it

Can also be tooling cfr. 
Azure DevOps Cloud-

based Loadtesting



71

Choosing an Alternative



72

Let’s use the shiny one, right?!
Maybe.



73

Choosing an Alternative

There is no silver bullet

Use the tool that fits your needs, not perse what you know

Be careful with the latest shiny technology

Decide as a team

Build or buy



74

Questions you should ask
What is the learning curve? Is it worthwhile?

Does it have a vendor lock-in?

Is it operable?

Does it have a future?



75



76

You learn by doing
And sometimes, you regret your choices.



77

Cloud platforms are never finished
Your platform evolves, and so does its needs

Prepare for your migrations

Nothing is written in stone

Use a product mindset

Change is coming, so you’d better be prepared



78

Stay up to date with Azure Deprecation Notic

Dashboard with deprecation notices concerning Azure services,

regions, features, APIs and SDKs

Search for services which you depend on

Get automated reminders (WIP)

@AzureEndOfLife on Twitter 



Conclusion

79



80

Conclusion
Technologies have scalability capabilities & trade-offs

Provide user-friendly webhooks & route them via API gateways

Define & roll out a good monitoring strategy

Automate everything, it will save you one day

You build it, you run it

We live in a world of constant change, so be prepared



Questions?

Twitter: @TomKerkhove
GitHub: @TomKerkhove

blog.tomkerkhove.be
codit.eu


