
Richard Seroter
Microsoft MVP - Azure

Modernizing Integrations



modernizing
integrations

Richard Seroter | @rseroter
Vice President, Pivotal

June 2019Integrate UK



@rseroter

Let’s go back 
to 2009.



@rseroter

Since 2009, lots of things have 
changed: new patterns, technologies, 
and expectations.



@rseroter

If you followed my 
advice in 2009, it’s time 
for an upgrade!



@rseroter

#1 The “what” + “why” of modernization

#2 Considerations when modernizing integrations

#3 Practices for modernization



@rseroter

#1 The “what” + “why” of modernization

#2 Considerations when modernizing integrations

#3 Practices for modernization



@rseroter

Last year I 
wrote a book.



@rseroter

“The transformation of application assets to adapt 
and optimize them to migrate to, or more readily 
integrate with, more modern digital software and 
cloud architectures or to retire them outright.”

How does Forrester define application modernization?



@rseroter

retire replatform refactor rebuild replace

greater impact

lower effort

Modernization is a spectrum.



@rseroter

BizTalk Server
Business Rules Engine

Custom Functoids
MSMQ

Windows Communication Foundation

Workflow Foundation
Windows Server AppFabric

SSIS

Microsoft Azure Service Bus

What do you 
have in 

place right 
now?



@rseroter

What are 
you asked 
to create?



@rseroter

We want integrations that get delivered 
to production faster, have newer
capabilities, cost less to operate, and 
are optimized for maintainability.



@rseroter

#1 The “what” + “why” of modernization

#2 Considerations when modernizing integrations

#3 Practices for modernization



@rseroter

Evaluate system maturity

Make different choices based on 
system and problem maturity

For experiments, use emerging tech 
or the simplest options

Mature problems or end-of-life 
systems should use commodity tech 
and an architecture focused on 
maintainability



@rseroter

“Unlearn” what you know

Don’t default to XML formats

Less centralized data storage and 
processing

Move biz logic into endpoints

Be integration enables vs 
gatekeepers

Reduce dependency on Windows



@rseroter

Introduce new components

Public cloud

Managed services

Functions

Event brokers

API gateways

Service meshes

Protocols (e.g. gRPC, RSocket)



@rseroter

Uncover new endpoints and 
users

SaaS and cloud-hosted systems

Custom and commercial API 
endpoints

Ad-hoc subscribers to data streams

Citizen integrators



@rseroter

Audit existing skills

Team skills will impact modernization 
approach

Identify skills gaps in API design, 
infrastructure automation, event 
stream processing

Assess the cost of missing skills and 
how/if to acquire



@rseroter

Upgrade interaction patterns

Introduce Event Thinking where it 
makes sense

Evolve from sense-and-respond (poll) 
to push triggers

Change how you access and interact 
with with production environments

@rseroter



@rseroter

Add automated delivery

On-demand environments for 
developers

Continuous integration pipelines for 
every integration

Automated deployment to production 
for all components



@rseroter

Choose a host location

Rehosting, replatforming, or 
refactoring?

Consider proximity to key systems 
and data sources

Evaluate usage expectations

Decide who takes ownership of the 
integration post-deploy



@rseroter

Decide how to manage it all

Moving from monolithic platform to 
micro-platforms

Create consistent approach to 
identity mgmt, logging, monitoring

Management centralized, or by team?



@rseroter

What’s the 
hard stuff?

“Modern” platforms don’t have feature parity 
with what you have today

Performance of cloud-based systems doesn’t 
match on-premises throughput

Modernizing integration may require a rewrite 
versus replatform

Missing business imperative to upgrade 
integrations

Critical systems aren’t in the cloud, or fail to 
expose useful APIs

Validating and measuring impact of 
modernization



@rseroter

#1 The “what” + “why” of modernization

#2 Considerations when modernizing integrations

#3 Practices for modernization



@rseroter

Practice

Content-
based 
routing

➔My advice in 2009
Use BizTalk Server with send port subscriptions.

➔My advice in 2019
Use BizTalk Server on-premises, and Service Bus (and 
Logic Apps) for cloud-based routing.

➔Benefits of 2019 advice
Your messaging engine is scalable and flexible.

➔Risks with 2019 advice
Explicit property promotion needed for Service Bus, or you 
need Logic Apps to parse the messages. Cloud-based 
routing rules aren’t centralized.



@rseroter

https://blog.eldert.net/integration-patterns-in-azure-message-router-using-service-bus/ https://connectedcircuits.blog/2017/11/01/content-based-
message-routing-using-azure-logic-apps-function-and-
service-bus/



@rseroter

Practice

De-batching 
from a 
database

➔My advice in 2009
Configure the BizTalk SQL Adapter and de-batch payload in 
the receive pipeline.

➔My advice in 2019
For bulk data, de-batch in a Logic App. Switch to real-time, 
event-driven change feeds where possible.

➔Benefits of 2019 advice
With change feeds, process data faster, with less engine-
based magic.

➔Risks with 2019 advice
De-batching requires orchestration (Logic Apps) versus 
pipeline-based de-batching. Can be a more manual setup.



@rseroter

https://www.codit.eu/blog/logic-apps-debatching/ https://azurebiztalkread.wordpress.com/2018/05/26/
debatching-using-azure-logic-apps/

https://docs.microsoft.com/en-
us/azure/cosmos-db/change-feed



@rseroter

Practice

High-
volume 
data 
processing

➔My advice in 2009
Deploy separate servers to run each host type, and avoid 
orchestration.

➔My advice in 2019
Use cloud services (Event Hubs, Databricks) for real-time 
event intake and processing. Use services like Azure Data 
Factory for bulk processing.

➔Benefits of 2019 advice
Get scale and low maintenance. Have access to novel 
functionality.

➔Risks with 2019 advice
Could be surprised by quotas, or bandwidth and storage 
costs. May also face troubleshooting and recoverability 
challenges.



@rseroter

https://medium.com/microsoftazure/an-introduction-
to-streaming-etl-on-azure-databricks-using-
structured-streaming-databricks-16b369d77e34

https://azure.microsoft.com/en-us/blog/data-
ingestion-into-azure-at-scale-made-easier-with-
latest-enhancements-to-adf-copy-data-tool/



@rseroter

Practice

Replaying 
data stream

➔My advice in 2009
Use a BizTalk receive location (or send port that subscribes 
to all incoming data) that writes to a historian. Send data 
back through BizTalk as needed.

➔My advice in 2019
Employ a distributed log like Azure Event Hubs and leave it 
to clients to access any point in the log.

➔Benefits of 2019 advice
No extra machinery for data storage, and consumers can 
retrieve events after the fact.

➔Risks with 2019 advice
May go overboard and swap out queues for logs when your 
use case demands the decoupling and event grouping of 
queues. Long term storage still an issue.



@rseroter

https://docs.microsoft.com/en-us/azure/event-
grid/compare-messaging-services

https://seroter.wordpress.com/2019/04/03/connecti
ng-your-java-microservices-to-each-other-heres-
how-to-use-spring-cloud-stream-with-azure-event-
hubs/



@rseroter

Practice

Sophisticated 
business 
rules

➔My advice in 2009
Use BizTalk’s Business Rules Engine, and employ functoids
or orchestration-embedded logic sparingly.

➔My advice in 2019
Extract business rules into standalone APIs and functions. 
Use maps sparingly when it comes to business logic.

➔Benefits of 2019 advice
Solution is more flexible, and maintainable by any
developer.

➔Risks with 2019 advice
More moving parts and callouts from in-process code.



@rseroter

https://pacodelacruzag.wordpress.com/2018/01/18/b
usiness-rules-on-azure-logic-apps-with-liquid-
templates/



@rseroter

Practice

Stateful 
workflow 
with 
correlation

➔My advice in 2009
Use orchestration and take advantage of dehydration, 
correlation, and transactions with compensation.

➔My advice in 2019
Use Durable Functions for long-running sequences, along 
with Logic Apps and Service Bus. Break apart giant 
orchestrations into choreographed sequences.

➔Benefits of 2019 advice
Easier for any developer to build workflows.

➔Risks with 2019 advice
You may come across limits in how long a workflow can 
“wait”, and there is less centralized coordination and 
observability.



@rseroter

https://toonvanhoutte.wordpress.com/2018/08/05/e
nd-to-end-correlation-across-logic-apps/

https://pacodelacruzag.wordpress.com/2017/07/17/c
orrelation-identifier-pattern-on-logic-apps/

https://toonvanhoutte.wordpress.com/2018/
08/19/perform-long-running-logic-apps-
tasks-with-durable-functions/



@rseroter

Practice

Complex 
data trans-
formation

➔My advice in 2009
Use the BizTalk Mapper to transform data structures, and 
take advantage of functoids and inline code.

➔My advice in 2019
Map data on the way out if at all, and use Liquid Templates
for transformation, but not business logic. Also consider 
transforming in code (Functions).

➔Benefits of 2019 advice
Avoid embedded too much brittle logic within a map, and 
leave it up to receivers to handle data structure changes.

➔Risks with 2019 advice
Not suitable for flat files or extremely difficult 
transformations. Puts new responsibilities on client 
consumers.



@rseroter

https://devkimchi.com/2019/01/07/building-xsl-
mapper-with-azure-functions/

https://www.codit.eu/blog/inbound-
outbound-maps-in-logic-apps/

https://www.codit.eu/blog/complex-
transformations-in-logic-apps/



@rseroter

Practice

Integrating 
with cloud 
endpoints

➔My advice in 2009
Call cloud endpoints using HTTP adapter and custom 
pipeline components for credentials or special formatting.

➔My advice in 2019
Use Logic Apps and connectors for integration with public 
cloud services. Use Logics Apps adapter for BizTalk where 
needed.

➔Benefits of 2019 advice
Any developer can integrate with cloud endpoints, and you 
have more maintainable integrations.

➔Risks with 2019 advice
More components from more platforms participating in an 
integration.



@rseroter

https://blog.webnersolutions.com/creating-azure-
logic-app-for-salesforce-integration

https://santoshhari.wordpress.com/2017/12/26/send-
daily-sms-azure-logic-apps-twilio-no-code/



@rseroter

Practice

Throttling 
and load-
leveling

➔My advice in 2009
Configure throttling settings in BizTalk Server, and use an 
outside queue or database as buffer.

➔My advice in 2019
Separate intake from processing. Use a cloud-based queue 
or log for intake, and consider Azure API Management for 
web request throttling.

➔Benefits of 2019 advice
Near infinite scale without pre-provisioning or maintenance 
concerns. Protect your cloud or on-premises systems.

➔Risks with 2019 advice
Latency is a risk, and you must secure all transport paths 
(plus payloads).



@rseroter

https://web-matters.blogspot.com/2018/01/queue-
based-load-levelling-using-azure.html

https://blogs.msdn.microsoft.com/david_burgs_blog
/2018/03/07/control-the-scale-of-a-logic-app/



@rseroter

Practice

Strangling 
your legacy 
ESB

➔My advice in 2009
Put new integrations into the new system, and rebuild 
existing ones over time.

➔My advice in 2019
Similar to 2009, but avoid modernizing to a single 
environment or instance. Use Event Storming to find seams 
to carve out.

➔Benefits of 2019 advice
Get into managed systems that offload operational cost and 
are inviting to more developers.

➔Risks with 2019 advice
You’ll have a (lengthy?) period of dual costs and skillsets.



@rseroter

Practice

Getting 
integrations 
into 
production

➔My advice in 2009
Package up BizTalk libraries, bindings, scripts, and policies 
into an MSI and deploy carefully.

➔My advice in 2019
Put on-premises and cloud apps onto continuous 
integration and delivery pipelines. Aim for zero-downtime 
deploys.

➔Benefits of 2019 advice
Reduce downtime, improve delivery velocity and reliability. 
Introduce automation that replaces human intervention.

➔Risks with 2019 advice
Complicated to set up with multi-component integrations. 
Risk of data loss or ordering anomalies when upgrades roll 
out.



@rseroter

https://www.serverless360.com/blog/azure-logic-
apps-life-cycle-the-big-picture

https://pacodelacruzag.wordpress.com/2017/10/11/pr
eparing-azure-logic-apps-for-cicd/



@rseroter

Practice

Building 
integration 
teams

➔My advice in 2009
“Invest in training and building a Center of Excellence.”

➔My advice in 2019
Integration experts should coach and mentor developers 
who use a variety of platforms to connect systems together.

➔Benefits of 2019 advice
Fewer bottlenecks waiting for the “integration team” to 
engage, and more types of simple integration get deployed.

➔Risks with 2019 advice
More distributed ownership and less visibility into all the 
integrations within the company.



@rseroter

You need a thoughtful modernization strategy 
for integration. Make clear decisions about the 
approaches and technologies for your portfolio.


